By Topic

Intelligent material handling: development and implementation of a matrix-based discrete-event controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mireles, J. ; Univ. Autonoma de Ciudad Juarez, Mexico ; Lewis, F.L.

A supervisory controller for discrete-event (DE) systems is presented that uses a novel matrix formulation. This matrix formulation makes it possible to directly write down the DE controller from standard manufacturing tools such as the bill of materials or the assembly tree. The matrices also make it straightforward to actually implement the DE controller on a manufacturing workcell for sequencing the jobs and assigning the resources. It is shown that the DE controller equations plus the Petri net marking transition equation together provide a complete dynamical description of a DE system. This means that a computer simulation can be performed to check the DE performance of the controller before it is implemented. In this paper, the authors implement the DE controller on an actual three-robot intelligent material handling cell at the Automation and Robotics Research Institute, University of Texas at Arlington, USA. Then, they show that the actual implementation and the simulated system give commensurate results. The versatility of the system developed with this DE controller permits implementing different methodologies for conflict resolution, as well as optimization of the resource assignment and part throughput. Technical information given includes the development of the controller in LabVIEW and its simulation using MATLAB

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:48 ,  Issue: 6 )