By Topic

Composite k-arbiters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yu-Chen Kuo ; Dept. of Comput. & Inf. Sci., Soochow Univ., Taipei, Taiwan

The k-arbiter is a useful concept to solve the distributed h-out-of-k mutual exclusion problem. The distributed h-out-of-k mutual exclusion algorithms, based on the k-arbiter, have the benefits of high fault tolerance and low message cost. However, according to the definition of the k-arbiter, it is required to have a nonempty intersection among any (κ + 1) quorums in a k-arbiter. Consequently, constructing k-arbiters is difficult. The coterie join operation proposed by Neilsen and Mizuno (1992) produces a new and larger coterie by joining known coteries. By extending the coterie join operation, we first propose a k-arbiter join operation to construct a new and larger k-arbiter from known k-arbiters for a large system. Then, we derive a necessary and sufficient condition for the k-arbiter join operation to construct a nondominated joined k-arbiter. Moreover, we discuss availability properties of the joined k-arbiters. We observe that, by selecting proper k-arbiters, the joined k-arbiter can provide a higher availability than that of the original input. Finally, we propose a k-arbiter compound, operation to construct k-arbiters by using coteries and/or k-coteries. By that way, the problem of constructing k-arbiters can be reduced to the problem of constructing coteries and/or k-coteries

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:12 ,  Issue: 11 )