Cart (Loading....) | Create Account
Close category search window

What is the limit of energy saving by dynamic voltage scaling?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gang Qu ; Dept. of Electr. & Comput. Eng., Maryland Univ., College Park, MD, USA

Dynamic voltage scaling (DVS) is a technique that varies the supply voltage and clock frequency based on the computation load to provide desired performance with the minimal amount of energy consumption. It has been demonstrated as one of the most effective low power system design techniques, in particular for real time systems. Previously, there are works on both ends of the DVS systems: the ideal variable voltage system which can change its voltage with no physical constraints, and the multiple voltage system which has a number of discrete voltages available simultaneously. In this paper, we study the DVS systems between these two extreme cases. We consider systems that can vary the operating voltage dynamically under various real-life physical constraints. Based on the system's different behavior during voltage transition, we define the feasible DVS system and the practical DVS system. We build mathematical model to analyze the potential of DVS on energy saving for these different systems. Finally, we simulate the behavior of a secure wireless communication networks with DVS systems. The results show that DVS results in energy reduction from 36% to 79%, and the real life DVS systems can be very close to the ideal system in energy saving.

Published in:

Computer Aided Design, 2001. ICCAD 2001. IEEE/ACM International Conference on

Date of Conference:

4-8 Nov. 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.