By Topic

Design and fabrication of submicrometer, single crystal Si accelerometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weigold, J.W. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Najafi, K. ; Pang, S.W.

A lateral accelerometer has been designed, simulated, and fabricated using a 3-mask high-aspect ratio technology. Electron beam lithography and high-density plasma etching in an inductively coupled plasma source enabled aspect ratios >30 to be achieved. This makes possible beams with very small spring constants. Combining the ability to measure very small displacement of a proof mass due to narrow capacitive gaps between comb fingers, a highly sensitive accelerometer can be obtained. The fabricated accelerometer with 1 μm beams and 0.2 μm comb gaps had a spring constant of 0.127 N/m, which is close to the calculated values of 0.146 N/m. Based on the capacitance measurements, the accelerometer sensitivity is calculated to be 6.3 fF/g. Reducing the beam width to 0.4 μm lowered the spring constant to 0.03 N/m, and an improved equivalent sensitivity of 79.2 fF/g is calculated. The minimum detectable acceleration is on the order of a few microgravity over a range of hundreds of gravities

Published in:

Microelectromechanical Systems, Journal of  (Volume:10 ,  Issue: 4 )