Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Designing a modern memory hierarchy with hardware prefetching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Fen Lin ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Reinhardt, S.K. ; Burger, D.

In this paper, we address the severe performance gap caused by high processor clock rates and slow DRAM accesses. We show that, even with an aggressive, next-generation memory system using four Direct Rambus channels and an integrated one-megabyte level-two cache, a processor still spends over half its time stalling for L2 misses. Our experimental analysis begins with an effort to tune our baseline memory system aggressively: incorporating optimizations to reduce DRAM row buffer misses, reordering miss accesses to reduce queuing delay, and adjusting the L2 block size to match each channel organization. We show that there is a large gap between the block sizes at which performance is best and at which miss rate is minimized. Using those results, we evaluate a hardware prefetch unit integrated with the L2 cache and memory controllers. By issuing prefetches only when the Rambus channels are idle, prioritizing them to maximize DRAM row buffer hits, and giving them low replacement priority, we achieve a 65 percent speedup across 10 of the 26 SPEC2000 benchmarks, without degrading the performance of the others. With eight Rambus channels, these 10 benchmarks improve to within 10 percent of the performance of a perfect L2 cache

Published in:

Computers, IEEE Transactions on  (Volume:50 ,  Issue: 11 )