By Topic

A class of block-iterative equalizers for intersymbol interference channels: fixed channel results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. M. Chan ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; G. W. Wornell

A new and efficient class of nonlinear equalizers is developed for intersymbol interference (ISI) channels. These -"iterated-decision equalizers” use an optimized multipass algorithm to successively cancel ISI from a block of received data and generate symbol decisions whose reliability increases monotonically with each iteration. These equalizers have an effective complexity comparable to the decision-feedback equalizer (DFE), yet asymptotically achieve the performance of maximum-likelihood sequence detection (MLSD). We show that, because their structure allows cancellation of both precursor and postcursor ISI, iterated-decision equalizers outperform the minimum mean-square error DFE by 2.507 dB on severe ISI channels even with uncoded systems. Moreover, unlike the DFE, iterated-decision equalizers can be readily used in conjunction with error-control coding, making them attractive for a wealth of applications

Published in:

IEEE Transactions on Communications  (Volume:49 ,  Issue: 11 )