By Topic

Burst-by-burst adaptive turbo-coded radial basis function-assisted decision feedback equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yee, M.S. ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Liew, T.H. ; Hanzo, L.

The performance of the proposed radial basis function (RBF) assisted turbo-coded adaptive modulation scheme is characterized in a wideband channel scenario. We commence by introducing the novel concept of the Jacobian RBF equalizer, which is a reduced-complexity version of the conventional RBF equalizer. Specifically, the Jacobian logarithmic RBF equalizer generates its output in the logarithmic domain and hence it can be used to provide soft outputs for the turbo-channel decoder. We propose using the average magnitude of the log-likelihood ratio (LLR) of the bits in the received transmission burst before channel decoding as the channel quality measure for controlling the mode-switching regime of our adaptive scheme

Published in:

Communications, IEEE Transactions on  (Volume:49 ,  Issue: 11 )