By Topic

High throughput low-density parity-check decoder architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
E. Yeo ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; P. Pakzad ; B. Nikolic ; V. Anantharam

Two decoding schedules and the corresponding serialized architectures for low-density parity-check (LDPC) decoders are presented. They are applied to codes with parity-check matrices generated either randomly or using geometric properties of elements in Galois fields. Both decoding schedules have low computational requirements. The original concurrent decoding schedule has a large storage requirement that is dependent on the total number of edges in the underlying bipartite graph, while a new, staggered decoding schedule which uses an approximation of the belief propagation, has a reduced memory requirement that is dependent only on the number of bits in the block. The performance of these decoding schedules is evaluated through simulations on a magnetic recording channel

Published in:

Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE  (Volume:5 )

Date of Conference: