Cart (Loading....) | Create Account
Close category search window
 

Comparing software prediction techniques using simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shepperd, M. ; Sch. of Design, Eng. & Comput., Bournemouth Univ., Poole, UK ; Kadoda, G.

The need for accurate software prediction systems increases as software becomes much larger and more complex. We believe that the underlying characteristics: size, number of features, type of distribution, etc., of the data set influence the choice of the prediction system to be used. For this reason, we would like to control the characteristics of such data sets in order to systematically explore the relationship between accuracy, choice of prediction system, and data set characteristic. It would also be useful to have a large validation data set. Our solution is to simulate data allowing both control and the possibility of large (1000) validation cases. The authors compare four prediction techniques: regression, rule induction, nearest neighbor (a form of case-based reasoning), and neural nets. The results suggest that there are significant differences depending upon the characteristics of the data set. Consequently, researchers should consider prediction context when evaluating competing prediction systems. We observed that the more "messy" the data and the more complex the relationship with the dependent variable, the more variability in the results. In the more complex cases, we observed significantly different results depending upon the particular training set that has been sampled from the underlying data set. However, our most important result is that it is more fruitful to ask which is the best prediction system in a particular context rather than which is the "best" prediction system

Published in:

Software Engineering, IEEE Transactions on  (Volume:27 ,  Issue: 11 )

Date of Publication:

Nov 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.