By Topic

PMM: a pipelined maximal-sized matching scheduling approach for input-buffered switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oki, E. ; NTT Network Innovation Labs., Tokyo, Japan ; Rojas-Cessa, R. ; Chao, H.J.

This paper proposes an innovative pipeline-based maximal-sized matching scheduling approach, called PMM, for input-buffered switches. It dramatically relaxes the timing constraint for arbitration with a maximal matching scheme. In the PMM approach, arbitration operates in a pipelined manner, where K subschedulers are used. Each subscheduler is allowed to take more than one time slot for its matching. Every time slot, one of them provides the matching result. The subscheduler can adopt a pre-existing efficient maximal matching algorithm such as iSLIP and DRRM. PMM maximizes the efficiency of the adopted arbitration scheme by allowing sufficient time for a number of iterations. We show that PMM preserves 100% throughput under uniform traffic and fairness for best-effort traffic of the pre-existing algorithm

Published in:

Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE  (Volume:1 )

Date of Conference: