By Topic

Video object tracking with a sequential hierarchy of template deformations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. Schoepflin ; Dept. of Electr. Eng. & Bioeng., Washington Univ., Seattle, WA, USA ; V. Chalana ; D. R. Haynor ; Yongmin Kim

We have developed a new contour-based tracking algorithm that uses a sequence of template deformations to model and track generic video objects. We organize the deformations into a hierarchy: globally affine deformations, piecewise (locally) affine deformations, and arbitrary smooth deformations (snakes). This design enables the algorithm to track objects whose pose and shape change in time compared to the template. If the object is not a rigid body, we model the temporal evolution of its shape by updating the entire template after each video frame; otherwise, we only update the pose of the object. Experimental results demonstrate that our method is able to track a variety of video objects, including those undergoing rapid changes. We quantitatively compare our algorithm with its constituent pieces (e.g., the snake algorithm) and show that the complete algorithm can track objects with moving parts for a longer duration than partial versions of the hierarchy. It could be benefited from a higher level algorithm to dynamically adjust the parameters and template deformations to improve the segmentation accuracy further. The hierarchical nature of this algorithm provides a framework that offers a modular approach for the design and enhancement of future object-tracking algorithms

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:11 ,  Issue: 11 )