By Topic

An optimal periodic scheduler for dual-arm robots in cluster tools with residency constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rostami, S. ; Electr. & Comput. Eng. Dept., Univ. of British Columbia, Vancouver, BC, Canada ; Hamidzadeh, B. ; Camporese, D.

Discusses a scheduling technique, for cluster tools, that addresses postprocessing residency constraints and throughput requirements. The residency constraints impose a limit on the postprocessing time that a material unit spends in a processing module. The technique searches in the time and resource domains for a feasible schedule with a maximum throughput. It operates in two main phases; the initial one of which (and the lower complexity one) computes a simple periodic schedule. For a large number of problem instances, the simple periodic schedule feasibly solves the problem. If a feasible schedule cannot be found in the first phase, the scheduler enters phase two (the higher complexity one) to compute a feasible schedule. During this phase, the scheduler incrementally increases the period only if necessary, to keep the throughput at a maximum. Several heuristics are designed and added to reduce the complexity of the scheduling algorithm. The resulting schedules are deadlock free, since resources are scheduled according to the times that they are available. Analytical and experimental analyses demonstrate the correctness and efficiency of our proposed technique

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:17 ,  Issue: 5 )