By Topic

A compact GaAs MESFET-based push-push oscillator MMIC using differential topology with low phase-noise performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sang-Woong Yoon ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Chang-Ho Lee ; Min-Gun Kim ; Chung-Hwan Kim
more authors

We present a fully integrated 6.7 GHz push-push oscillator MMIC using a cross-coupled differential topology with a capacitive coupling feedback in a commercial GaAs MESFET process. The push-push oscillator shows phase noise of -118.83 dBc/Hz at an offset frequency of 600 kHz with a 3.3 V supply voltage. This low phase-noise performance is comparable to, or better than, the best reported results of 5/spl sim/6 GHz-band oscillators implemented in CMOS and SiGe HBT processes. A 6.4 GHz fundamental oscillator MMIC using the cross-coupled differential topology was also fabricated. The measured phase-noise of the fundamental oscillator is -108 dBc/Hz at an offset frequency of 600 kHz. In addition to the low phase-noise, the push-push oscillator in this paper occupies a compact area of 480/spl times/500 /spl mu/m/sup 2/. To our knowledge, it is the first implementation of a GaAs MESFET-based push-push oscillator MMIC using the cross-coupled differential topology with capacitive coupling feedback. This work is also the first report that shows the low phase-noise performance of the push-push oscillator using the differential topology as compared with that of the fundamental oscillator.

Published in:

Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2001. 23rd Annual Technical Digest

Date of Conference:

21-24 Oct. 2001