Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Genetic algorithm approach to designing finite-precision controller structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Whidborne, J.F. ; Div. of Eng., King''s Coll., London, UK ; Istepanian, R.S.H.

The parameters of a digital control design usually need to be rounded when the controller is implemented with finite precision arithmetic. This often results in degradation of the closed loop performance and reduced stability margins. This paper presents a multi-objective genetic algorithm based approach to designing the structure of a finite-precision second-order state space controller implementation, which can simultaneously minimise some set of performance degradation indices and implementation cost indices. The approach provides a set of solutions that are near Pareto-optimal, and so allows the designer to trade-off performance degradation against implementation cost. The method is illustrated by the design of the structure of a PID controller for the IFAC93 benchmark problem

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:148 ,  Issue: 5 )