By Topic

Modeling dynamic channel allocation in multicellular communication networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Boggia ; Dipartimento di Elettrotecnica ed Elettronica, Bari Univ., Italy ; P. Camarda

Future cellular mobile communication networks will exploit microcellular architectures and dynamic channel allocation in order to meet the rapidly increasing traffic demand. In this paper, an analytical model has been developed in order to evaluate the performance of maximum packing, a dynamic channel allocation scheme for cellular communication networks. Specifically, a finite number of users has been assumed, moving in a geographical region, covered by a finite set of cells. The considered users are characterized by a variable degree of mobility, which allows both variable sized cells and different user speeds to be analyzed. The model, based on queueing networks, allows the evaluation of the main system performance parameters in terms of blocking probability of new calls, handoff blocking probability, forced termination probability, unsuccessful probability, and throughput. Performance predictions are confirmed by simulation in a wide range of load conditions and user mobility

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:19 ,  Issue: 11 )