By Topic

Processing directed acyclic graphs with recursive neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Bianchini ; Department of Ingegneria dell'Informazione, Siena Univ., Italy ; M. Gori ; F. Scarselli

Recursive neural networks are conceived for processing graphs and extend the well-known recurrent model for processing sequences. In Frasconi et al. (1998), recursive neural networks can deal only with directed ordered acyclic graphs (DOAGs), in which the children of any given node are ordered. While this assumption is reasonable in some applications, it introduces unnecessary constraints in others. In this paper, it is shown that the constraint on the ordering can be relaxed by using an appropriate weight sharing, that guarantees the independence of the network output with respect to the permutations of the arcs leaving from each node. The method can be used with graphs having low connectivity and, in particular, few outcoming arcs. Some theoretical properties of the proposed architecture are given. They guarantee that the approximation capabilities are maintained, despite the weight sharing

Published in:

IEEE Transactions on Neural Networks  (Volume:12 ,  Issue: 6 )