By Topic

Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan ; Chih-Hong Lin ; Po-Hung Shen

A self-constructing fuzzy neural network (SCFNN) which is suitable for practical implementation is proposed. The structure and the parameter learning phases are performed concurrently and online in the SCFNN. The structure learning is based on the partition of input space and the parameter learning is based on the supervised gradient decent method using a delta adaptation law. Several simulation and experimental results are provided to demonstrate the effectiveness of the proposed SCFNN control stratagem with the implementation of a permanent-magnet synchronous motor speed drive. Moreover, the simulation results of time varying and nonlinear disturbances are given to show the dynamic characteristics of the proposed controller over a broad range of operating conditions

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:9 ,  Issue: 5 )