Cart (Loading....) | Create Account
Close category search window
 

The power of two choices in randomized load balancing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mitzenmacher, M. ; Harvard Univ., Cambridge, MA, USA

We consider the following natural model: customers arrive as a Poisson stream of rate λn, λ<1, at a collection of n servers. Each customer chooses some constant d servers independently and uniformly at random from the n servers and waits for service at the one with the fewest customers. Customers are served according to the first-in first-out (FIFO) protocol and the service time for a customer is exponentially distributed with mean 1. We call this problem the supermarket model. We wish to know how the system behaves and in particular we are interested in the effect that the parameter d has on the expected time a customer spends in the system in equilibrium. Our approach uses a limiting, deterministic model representing the behavior as n→∞ to approximate the behavior of finite systems. The analysis of the deterministic model is interesting in its own right. Along with a theoretical justification of this approach, we provide simulations that demonstrate that the method accurately predicts system behavior, even for relatively small systems. Our analysis provides surprising implications. Having d=2 choices leads to exponential improvements in the expected time a customer spends in the system over d=1, whereas having d=3 choices is only a constant factor better than d=2. We discuss the possible implications for system design

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:12 ,  Issue: 10 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.