By Topic

Theoretical and experimental studies of a novel cone-jet sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xie, T. ; Centre for Manuf. Metrol., Brunel Univ., Uxbridge, UK ; Qingping Yang ; Jones, B.E. ; Butler, C.

Modeling of a novel cone-jet sensor using two-dimensional (2-D) finite element analysis was investigated for dimensional measurement. Theoretical and experimental studies demonstrated that a cone-jet sensor supplied with air can be used to accurately measure displacement, and its work range of 1.5 to 4.2 mm is some ten times greater than a simple back-pressure sensor. It is anticipated that this type of sensor will find wide applications in manufacturing industry due to its wider working range, high precision, and other features

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:50 ,  Issue: 5 )