By Topic

Clustering of web users using session-based similarity measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jitian Xiao ; Sch. of Comput. & Inf. Sci., Edith Cowan Univ., Mount Lawley, WA, Australia ; Yanchun Zhang

One important research topic in web usage mining is the clustering of web users based on their common properties. Informative knowledge obtained from web user clusters were used for many applications, such as the prefetching of pages between web clients and proxies. This paper presents an approach for measuring similarity of interests among web users from their past access behaviors. The similarity measures are based on the user sessions extracted from the user's access logs. A multi-level scheme for clustering a large number of web users is proposed, as an extension to the method proposed in our previous work (2001). Experiments were conducted and the results obtained show that our clustering method is capable of clustering web users with similar interests

Published in:

Computer Networks and Mobile Computing, 2001. Proceedings. 2001 International Conference on

Date of Conference:

2001