By Topic

Software cost estimation with incomplete data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Strike, K. ; Sch. of Comput. Sci., McGill Univ., Montreal, Que., Canada ; El Emam, K. ; Madhavji, N.

The construction of software cost estimation models remains an active topic of research. The basic premise of cost modeling is that a historical database of software project cost data can be used to develop a quantitative model to predict the cost of future projects. One of the difficulties faced by workers in this area is that many of these historical databases contain substantial amounts of missing data. Thus far, the common practice has been to ignore observations with missing data. In principle, such a practice can lead to gross biases and may be detrimental to the accuracy of cost estimation models. We describe an extensive simulation where we evaluate different techniques for dealing with missing data in the context of software cost modeling. Three techniques are evaluated: listwise deletion, mean imputation, and eight different types of hot-deck imputation. Our results indicate that all the missing data techniques perform well with small biases and high precision. This suggests that the simplest technique, listwise deletion, is a reasonable choice. However, this will not necessarily provide the best performance. Consistent best performance (minimal bias and highest precision) can be obtained by using hot-deck imputation with Euclidean distance and a z-score standardization

Published in:

Software Engineering, IEEE Transactions on  (Volume:27 ,  Issue: 10 )