By Topic

Power system security assessment using neural networks: feature selection using Fisher discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jensen, C.A. ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; El-Sharkawi, M.A. ; Marks, R.J.

One of the most important considerations in applying neural networks to power system security assessment is the proper selection of training features. Modern interconnected power systems often consist of thousands of pieces of equipment each of which may have an effect on the security of the system. Neural networks have shown great promise for their ability to quickly and accurately predict the system security when trained with data collected from a small subset of system variables. This paper investigates the use of Fisher's linear discriminant function, coupled with feature selection techniques as a means for selecting neural network training features for power system security assessment. A case study is performed on the IEEE 50-generator system to illustrate the effectiveness of the proposed techniques

Published in:

Power Systems, IEEE Transactions on  (Volume:16 ,  Issue: 4 )