By Topic

80-Mb/s QPSK and 72-Mb/s 64-QAM flexible and scalable digital OFDM transceiver ASICs for wireless local area networks in the 5-GHz band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
W. Eberle ; Katholieke Univ., Leuven, Belgium ; V. Derudder ; G. Vanwijnsberghe ; M. Vergara
more authors

With the advent of mobile communications, voice telecommunications became wireless. Future applications, however, target multimedia, messaging, and high-speed Internet access, all expressing the need for a broadband high-speed wireless access technique. Both the domestic multimedia and the wireless local area network (WLANs) business markets are addressed. Established systems deliver 2-11 Mb/s based on spectrally inefficient spread-spectrum techniques, where scalability has reached a limit. The next generation of modems requires spectrally more efficient low-power and highly integrated solutions. We describe here the design of two digital baseband orthogonal frequency division multiplex (OFDM) signal processing ASICs, implementing respectively a quaternary phase-shift keying (QPSK)-based 80-Mb/s and a 64 quadrature amplitude modulation (QAM)-based 72-Mb/s digital inner transceiver. The latter partially matches the Hiperlan/2 and IEEE 802.11a standards. Joint development of signal processing algorithms and architectures along with on-chip data transfer, control, and partitioning leads to a low-power, yet flexible and scalable implementation. Both ASICs were designed in a unique object-oriented C++ design flow starting from algorithm level. The ASICs were successfully tested in a 5-GHz testbed both for file data transfer and web-cam multimedia transmission

Published in:

IEEE Journal of Solid-State Circuits  (Volume:36 ,  Issue: 11 )