By Topic

An energy-efficient reconfigurable public-key cryptography processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goodman, J. ; Chrysalis-ITS, Ottawa, Ont., Canada ; Chandrakasan, A.P.

The ever-increasing demand for security in portable energy-constrained environments that lack a coherent security architecture has resulted in the need to provide energy-efficient algorithm-agile cryptographic hardware. Domain-specific reconfigurability is utilized to provide the required flexibility, without incurring the high overhead costs associated with generic reprogrammable logic. The resulting implementation is capable of performing an entire suite of cryptographic primitives over the integers modulo N, binary Galois fields and nonsupersingular elliptic curves over GF(2n), with fully programmable moduli, field polynomials and curve parameters ranging in size from 8 to 1024 bits. The resulting processor consumes a maximum of 75 mW when operating at a clock rate of 50 MHz and a 2-V supply voltage. In ultralow-power mode (3 MHz at 0.7 V) the processor consumes at most 525 μW. Measured performance and energy efficiency indicate a comparable level of performance to previously reported dedicated hardware implementations, while providing all of the flexibility of a software-based implementation. In addition, the processor is two to three orders of magnitude more energy efficient than optimized software and reprogrammable logic-based implementations

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:36 ,  Issue: 11 )