Cart (Loading....) | Create Account
Close category search window
 

Novel waveguide structures for enhanced fiber grating devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Eggleton, B.J. ; Opt. Fiber Devices, Lucent Technol., Murray Hill, NJ, USA ; Ahuja, A.K. ; Feder, K.S. ; Headley, C.
more authors

An emerging class of fiber waveguide structures is being used to increase the functionality of fiber gratings, enabling new devices critical to the performance of next generation light-wave communications systems. These devices rely on advances in the fabrication of optical fiber waveguides, which go beyond the conventional doped silica design and fall into two general categories: 1) local modifications to the waveguide after fabrication and 2) fibers drawn with modified claddings that include nonsilica regions throughout their length. This paper provides a comprehensive review of emerging fiber waveguide structures that enhance the functionality of optical fiber grating devices. Two examples of technologies that fall into the first category are thin metal films deposited onto the cladding surface, which can be used for thermal tuning and infusion of nonsilica materials into the air regions, which change the waveguide structure and can provide enhanced tunability. The second category is typified by air-silica microstructured optical fibers, which contain air-voids that run along the length of the fiber. These fibers have unique cladding mode properties that can be exploited in fiber grating based devices

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:7 ,  Issue: 3 )

Date of Publication:

May/Jun 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.