By Topic

Operating characteristics of single-quantum-well AlGaAs/GaAs high-power lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wagner, D.K. ; McDonnell-Douglas Astronautics Co., Elmsford, NY, USA ; Waters, R.G. ; Tihanyi, P.L. ; Hill, D.S.
more authors

The operating characteristics of six types of graded-index separate confinement heterostructure single-quantum-well wide-stripe lasers grown by metalorganic chemical vapor deposition are reported. The lasers exhibited intrinsic mode losses as low as 3 cm-1 and internal quantum efficiencies near unity. Measured differential gain coefficients range from 3.7 to 6.5 cm/A, and extrapolated transparency current densities range from 54 to 145 A/cm2. These wide-stripe lasers are typically multilongitudinal mode and exhibit narrowing of the gain envelope and lateral far-field pattern as the cavity length increases. The high value of T0(>200 K) at long cavity lengths in conjunction with the low current density permits junction-side-up operation to CW optical powers of 0.5-0.7 W/facet, at which level catastrophic facet damage occurs on the uncoated devices. A maximum power conversion efficiency of 57% was measured on the laser structure exhibiting the lowest threshold current

Published in:

Quantum Electronics, IEEE Journal of  (Volume:24 ,  Issue: 7 )