By Topic

Group delay shift covariant quadratic time-frequency representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Papandreou-Suppappola, A. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Murray, R.L. ; Byeong-Gwan Iem ; Boudreaux-Bartels, G.F.

We propose classes of quadratic time-frequency representations (QTFRs) that are covariant to group delay shifts (GDSs). The GDS covariance QTFR property is important for analyzing signals propagating through dispersive systems with frequency-dependent characteristics. This is because a QTFR satisfying this property provides a succinct representation whenever the time shift is selected to match the frequency-dependent changes in the signal's group delay that may occur in dispersive systems. We obtain the GDS covariant classes from known QTFR classes (such as Cohen's (1995) class, the affine class, the hyperbolic class, and the power classes) using warping transformations that depend on the relevant group delay change. We provide the formulation of the GDS covariant classes using two-dimensional (2-D) kernel functions, and we list desirable QTFR properties and kernel constraints, as well as specific class members. We present known examples of the GDS covariant classes, and we provide a new class: the power exponential QTFR class. We study the localized-kernel subclasses of the GDS covariant classes that simplify the theoretical development as the kernels reduce from 2-D to one-dimensional (1-D) functions, and we develop various intersections between the QTFR classes. Finally, we present simulation results to demonstrate the advantage of using QTFRs that are matched to changes in the group delay of a signal

Published in:

Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 11 )