By Topic

Vickrey prices and shortest paths: what is an edge worth?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hershberger, John ; Mentor Graphics Corp., Wilsonville, OR, USA ; Suri, S.

We solve a shortest path problem that is motivated by recent interest in pricing networks or other computational resources. Informally, how much is an edge in a network worth to a user who wants to send data between two nodes along a shortest path? If the network is a decentralized entity, such as the Internet, in which multiple self-interested agents own different parts of the network, then auction-based pricing seems appropriate. A celebrated result from auction theory shows that the use of Vickrey pricing motivates the owners of the network resources to bid truthfully. In Vickrey's scheme, each agent is compensated in proportion to the marginal utility he brings to the auction. In the context of shortest path routing, an edge's utility is the value by which it lowers the length of the shortest path, i.e., the difference between the shortest path lengths with and without the edge. Our problem is to compute these marginal values for all the edges of the network efficiently. The naive method requires solving the single-source shortest path problem up to n times, for an n-node network. We show that the Vickrey prices for all the edges can be computed in the same asymptotic time complexity as one single-source shortest path problem. This solves an open problem posed by N. Nisan and A. Ronen (1999).

Published in:

Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on

Date of Conference:

8-11 Oct. 2001