By Topic

A retargetable VLIW compiler framework for DSPs with instruction-level parallelism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rajagopalan, S. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Rajan, S.P. ; Malik, S. ; Rigo, S.
more authors

A standard design methodology for embedded processors today is the system-on-a-chip design with potentially multiple heterogeneous processing elements on a chip, such as a very long instruction word (VLIW) processor, digital signal processor (DSP), and field-programmable gate array. To be able to program these devices, we need compilers that are capable of generating efficient code for the different types of processing elements with efficiency measured in terms of power, area, and execution time. In addition, the compilers should also be highly retargetable to enable the system designer to quickly evaluate different cores for the application on hand and reduce the time to market. In this paper, we show that we can extend a conventional VLIW compilation environment to develop highly retargetable optimizing compilers for DSPs with irregular architectures. We have used the second generation Fujitsu Hiperion fixed-point DSP as our primary example to evaluate the compiler framework. We demonstrate through experimental results that execution time for the assembly code generated using our framework is roughly two times better than that of the code generated by a widely used commercially available DSP compiler. Even without incorporating DSP-specific optimizations in our extended VLIW framework, we demonstrate that the compiled code has a better performance than the code generated by a commercial DSP-specific compiler in all our examples

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )