By Topic

Multiple camera tracking of interacting and occluded human motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dockstader, S.L. ; Dept. of Electr. & Comput. Eng., Rochester Univ., NY, USA ; Tekalp, A.M.

We propose a distributed, real-time computing platform for tracking multiple interacting persons in motion. To combat the negative effects of occlusion and articulated motion we use a multiview implementation, where each view is first independently processed on a dedicated processor. This monocular processing uses a predictor-corrector filter to weigh reprojections of three-dimensional (3-D) position estimates, obtained by the central processor, against observations of measurable image motion. The corrected state vectors from each view provide input observations to a Bayesian belief network, in the central processor, with a dynamic, multidimensional topology that varies as a function of scene content and feature confidence. The Bayesian net fuses independent observations from multiple cameras by iteratively resolving independency relationships and confidence levels within the graph, thereby producing the most likely vector of 3-D state estimates given the available data. To maintain temporal continuity, we follow the network with a layer of Kalman filtering that updates the 3-D state estimates. We demonstrate the efficacy of the proposed system using a multiview sequence of several people in motion. Our experiments suggest that, when compared with data fusion based on averaging, the proposed technique yields a noticeable improvement in tracking accuracy

Published in:

Proceedings of the IEEE  (Volume:89 ,  Issue: 10 )