Cart (Loading....) | Create Account
Close category search window
 

Feature extraction of chromosomes from 3-D confocal microscope images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kyan, M.J. ; Sch. of Electr. & Inf. Syst. Eng., Sydney Univ., NSW, Australia ; Ling Guan ; Arnison, M.R. ; Cogswell, C.J.

An investigation of local energy surface detection integrated with neural network techniques for image segmentation is presented, as applied in the feature extraction of chromosomes from image datasets obtained using an experimental confocal microscope. Use of the confocal microscope enables biologists to observe dividing cells (living or preserved) within a three-dimensional (3-D) volume, that can be visualised from multiple aspects, allowing for increased structural insight. The Nomarski differential interference contrast mode used for imaging translucent specimens, such as chromosomes, produces images not suitable for volume rendering. Segmentation of the chromosomes from this data is, thus, necessary. A neural network based on competitive learning, known as Kohonen's self-organizing feature map (SOFM) was used to perform segmentation, using a collection of statistics or features defining the image. The authors' past investigation showed that standard features such as the localized mean and variance of pixel intensities provided reasonable extraction of objects such as mitotic chromosomes, but surface detail was only moderately resolved. In this current work, a biologically inspired feature known as local energy is investigated as an alternative image statistic based on phase congruency in the image. This, along with different combinations of other image statistics, is applied in a SOFM, producing 3-D images exhibiting vast improvement in the level of detail and clearly isolating the chromosomes from the background

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:48 ,  Issue: 11 )

Date of Publication:

Nov 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.