By Topic

The localization of spontaneous brain activity: an efficient way to analyze large data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. C. de Munck ; MEG Center, Vrije Univ. Hospital, Amsterdam, Netherlands ; A. de Jongh ; B. W. Van Dijk

An efficient solution is presented of the problem to localize the electric generators of spontaneous magnetoencephalography (MEG) and electroencephalography (EEG) data for large data sets. When a data set contains more than 100,000 samples standard methods fail or become impractical. The method presented here is useful, for example, for the localization of (pathological) brain rhythms or the analysis of single-trial data. The problem is defined as finding the good fitting dipoles using the single-dipole model applied on each time sample. First, the data is bandpass filtered to select the rhythm of interest. Next, the empirical relationship between data power and probability of a dipole with a high goodness of fit (g.o.f.) is used to preselect data points. Then a global search algorithm is applied, based on precomputed lead fields on a fixed grid, to obtain a good initial guess for the nonlinear dipole search. Finally, the dipole search is applied on those samples that have a low initial guess error. In a group of five patients, it is found that 50% of the dipoles with a g.o.f. of at least 90% can be found by disregarding 90% of the data samples. Those dipoles can be found efficiently by disregarding all sample points with an initial guess relative residual error of 15% or lower. Finally, a simple empirical expression is found for the optimal mesh size of the global search grid. The method is completely automatic and makes it possible to study simple generators of large MEG and EEG data sets on a routine basis.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:48 ,  Issue: 11 )