By Topic

A semidefinite program for distillable entanglement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rains, E.M. ; AT&T Labs., Florham Park, NJ, USA

We show that the maximum fidelity obtained by a positive partial transpose (p.p.t.) distillation protocol is given by the solution to a certain semidefinite program. This gives a number of new lower and upper bounds on p.p.t. distillable entanglement (and thus new upper bounds on 2-locally distillable entanglement). In the presence of symmetry, the semidefinite program simplifies considerably, becoming a linear program in the case of isotropic and Werner states. Using these techniques, we determine the p.p.t. distillable entanglement of asymmetric Werner states and “maximally correlated” states. We conclude with a discussion of possible applications of semidefinite programming to quantum codes and 1-local distillation

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 7 )