By Topic

Estimating a function from ergodic samples with additive noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nobel, A.B. ; Dept. of Stat., North Carolina Univ., Chapel Hill, NC, USA ; Adams, T.M.

We study the problem of estimating an unknown function from ergodic samples corrupted by additive noise. It is shown that one can consistently recover an unknown measurable function in this setting, if the one-dimensional (1-D) distribution of the samples is comparable to a known reference distribution, and the noise is independent of the samples and has known mixing rates. The estimates are applied to deterministic sampling schemes, in which successive samples are obtained by repeatedly applying a fixed map to a given initial vector, and it is then shown how the estimates can be used to reconstruct an ergodic transformation from one of its trajectories

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 7 )