By Topic

An information-theoretic approach for design and analysis of rooted-tree-based multicast key management schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Poovendran ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; J. S. Baras

Previous literature presents several seemingly different approaches to rooted-tree-based multicast key distribution schemes that try to minimize the user key storage while providing efficient member deletion. In this paper, we show that the user key storage on rooted trees can be systematically studied using basic concepts from information theory. We show that the rooted-tree-based multicast key distribution problem can be posed as an optimization problem that is abstractly identical to the optimal codeword length selection problem in information theory. In particular, we show that the entropy of member deletion statistics quantifies the optimal value of the average number of keys to be assigned to a member. We relate the sustainable key length to statistics of member deletion event and the hardware bit generation rate. We then demonstrate the difference between the key distribution on rooted trees and the optimal codeword length selection problem with an example of a key distribution scheme that attains optimality but fails to prevent user collusion

Published in:

IEEE Transactions on Information Theory  (Volume:47 ,  Issue: 7 )