Cart (Loading....) | Create Account
Close category search window
 

Space-time autocoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hochwald, B.M. ; Math. Sci. Res. Center, Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; Marzetta, T.L. ; Hassibi, B.

Prior treatments of space-time communications in Rayleigh flat fading generally assume that channel coding covers either one fading interval-in which case there is a nonzero “outage capacity”-or multiple fading intervals-in which case there is a nonzero Shannon capacity. However, we establish conditions under which channel codes span only one fading interval and yet are arbitrarily reliable. In short, space-time signals are their own channel codes. We call this phenomenon space-time autocoding, and the accompanying capacity the space-time autocapacity. Let an M-transmitter antenna, N-receiver antenna Rayleigh flat fading channel be characterized by an M×N matrix of independent propagation coefficients, distributed as zero-mean, unit-variance complex Gaussian random variables. This propagation matrix is unknown to the transmitter, it remains constant during a T-symbol coherence interval, and there is a fixed total transmit power. Let the coherence interval and number of transmitter antennas be related as T=βM for some constant β. A T×M matrix-valued signal, associated with R·T bits of information for some rate R is transmitted during the T-symbol coherence interval. Then there is a positive space-time autocapacity Ca such that for all R<Ca, the block probability of error goes to zero as the pair (T, M)→∞ such that T/M=β. The autocoding effect occurs whether or not the propagation matrix is known to the receiver, and Ca=Nlog(1+ρ) in either case, independently of β, where ρ is the expected signal-to-noise ratio (SNR) at each receiver antenna. Lower bounds on the cutoff rate derived from random unitary space-time signals suggest that the autocoding effect manifests itself for relatively small values of T and M. For example, within a single coherence interval of duration T=16, for M=7 transmitter antennas and N=4 receiver antennas, and an 18-dB expected SNR, a total of 80 bits (corresponding to rate R=5) can theoretically be transmitted with a block probability of error less than 10-9, all without any training or knowledge of the propagation matrix

Published in:

Information Theory, IEEE Transactions on  (Volume:47 ,  Issue: 7 )

Date of Publication:

Nov 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.