By Topic

Low-density parity-check codes based on finite geometries: a rediscovery and new results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Kou ; Dept. of Electr. & Comput. Eng., California Univ., Davis, CA, USA ; S. Lin ; M. P. C. Fossorier

This paper presents a geometric approach to the construction of low-density parity-check (LDPC) codes. Four classes of LDPC codes are constructed based on the lines and points of Euclidean and projective geometries over finite fields. Codes of these four classes have good minimum distances and their Tanner (1981) graphs have girth 6. Finite-geometry LDPC codes can be decoded in various ways, ranging from low to high decoding complexity and from reasonably good to very good performance. They perform very well with iterative decoding. Furthermore, they can be put in either cyclic or quasi-cyclic form. Consequently, their encoding can be achieved in linear time and implemented with simple feedback shift registers. This advantage is not shared by other LDPC codes in general and is important in practice. Finite-geometry LDPC codes can be extended and shortened in various ways to obtain other good LDPC codes. Several techniques of extension and shortening are presented. Long extended finite-geometry LDPC codes have been constructed and they achieve a performance only a few tenths of a decibel away from the Shannon theoretical limit with iterative decoding

Published in:

IEEE Transactions on Information Theory  (Volume:47 ,  Issue: 7 )