By Topic

Image segmentation using the double Markov random field, with application to land use estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. P. Wilson ; Dept. of Stat., Trinity Coll., Dublin, Ireland ; G. Stefanou

We describe the double Markov random field, a natural hierarchical model for a Bayesian approach to model-based textured image segmentation. The model is difficult to implement, even using Markov chain Monte Carlo (MCMC) methods, so we describe an approximation that is computationally feasible. This is applied to a satellite image. We emphasise the valuable additional information about uncertainties in the segmentation that can be gained from the use of MCMC

Published in:

Image Processing, 2001. Proceedings. 2001 International Conference on  (Volume:1 )

Date of Conference:

2001