By Topic

Modeling of near-field sources in the finite-difference time-domain (FDTD)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Potter, M.E. ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada ; Stuchly, M.A. ; Okoniewski, M.

The FDTD method has been used extensively in electromagnetic field modeling because of its ability to handle interactions with complex heterogeneous structures robustly. The method has attained success in scattering and absorption predictions restricted to using uniform plane wave sources. There are many cases where the object of interest is located in the radiating near-field of the source, where plane wave approximations are not appropriate. We show how near field sources can be efficiently implemented as spherical waves in the total/scattered FD'I'D method. Given a spherical wave representation for a source, that source can be initiated in the computational domain by time-stepping modal amplitude functions on alternate 1-dimensional radial FDTD grids. By interpolating these modal amplitude functions with stored angular functions, a full set of spherical waves can be initiated on the Huygens surface. To develop the method fully, absorbing boundary conditions must be developed, the method must be synthesized with an existing FDTD program and we must validate the method with a canonical problem involving multiple modes. It should be noted that this paper represents a preliminary validation of the method.

Published in:

Antennas and Propagation Society International Symposium, 2001. IEEE  (Volume:1 )

Date of Conference:

8-13 July 2001