By Topic

Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Secker, A. ; Univ. of New South Wales, Sydney, NSW, Australia ; Taubman, D.

This paper proposes a new framework for the construction of motion compensated wavelet transforms, with application to efficient highly scalable video compression. Motion compensated transform techniques, as distinct from motion compensated predictive coding, represent a key tool in the development of highly scalable video compression algorithms. The proposed framework overcomes a variety of limitations exhibited by existing approaches. This new method overcomes the failure of frame warping techniques to preserve perfect reconstruction when tracking complex scene motion. It also overcomes some of the limitations of block displacement methods. Specifically, the lifting framework allows the transform to exploit inter-frame redundancy without any dependence on the model selected for estimating and representing motion. A preliminary implementation of the proposed approach was tested in the context of a scalable video compression system, yielding PSNR performance competitive with other results reported in the literature.

Published in:

Image Processing, 2001. Proceedings. 2001 International Conference on  (Volume:2 )

Date of Conference:

7-10 Oct. 2001