By Topic

Optical flow estimation using high frame rate sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
SukHwan Lim ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; El Gamal, A.

Gradient-based optical flow estimation methods such as the Lucas-Kanade (1981) method work well for scenes with small displacements but fail when objects move with large displacements. Hierarchical matching-based methods do not suffer from large displacements but are less accurate. By utilizing the high speed imaging capability of CMOS image sensors, the frame rate can be increased to obtain more accurate optical flow with wide range of scene velocities in real time. Further, by integrating the memory and processing with the sensor on the same chip, optical flow estimation using high frame rate sequences can be performed without unduly increasing the off-chip data rate. The paper describes a method for obtaining high accuracy optical flow at a standard frame rate using high frame rate sequences. The Lucas-Kanade method is used to obtain optical flow estimates at high frame rate, which are then accumulated and refined to obtain optical flow estimates at a standard frame rate. The method is tested on video sequences synthetically generated by perspective warping. The results demonstrate significant improvements in optical flow estimation accuracy with moderate memory and computational power requirements

Published in:

Image Processing, 2001. Proceedings. 2001 International Conference on  (Volume:2 )

Date of Conference:

7-10 Oct 2001