By Topic

Computerized analysis of 3-D pulmonary nodule images in surrounding and internal structure feature spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Y. Kawata ; Dept. of Opt. Sci., Tokushima Univ., Japan ; N. Niki ; H. Ohmatsu ; M. Kusumoto
more authors

We are developing computerized feature extraction and classification methods to analyze malignant and benign pulmonary nodules in three-dimensional (3-D) thoracic CT images. Surrounding structure features were designed to characterize the relationships between nodules and their surrounding structures such as vessel, bronchi, and pleura. Internal structure features were derived from CT density and 3-D curvatures to characterize the inhomogeneous of CT density distribution inside the nodule. The stepwise linear discriminant classifier was used to select the best feature subset from multidimensional feature spaces. The discriminant scores output from the classifier were analyzed by the receiver operating characteristic (ROC) method and the classification accuracy was quantified by the area, Az, under the ROC curve. We analyzed a data set of 248 pulmonary nodules in this study. The internal structure features (Az=0.88) were more effective than the surrounding structure features (Az=0.69) in distinguishing malignant and benign nodules. The highest classification accuracy (Az=0.94) was obtained in the combined internal and surrounding structure feature space. The improvement was statistically significant in comparison to classification in either the internal structure or the surrounding structure feature space alone. The results of this study indicate the potential of using combined internal and surrounding structure features for computer-aided classification of pulmonary nodules

Published in:

Image Processing, 2001. Proceedings. 2001 International Conference on  (Volume:2 )

Date of Conference:

7-10 Oct 2001