Cart (Loading....) | Create Account
Close category search window
 

Conditional speculation and its effects on performance and area for high-level synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gupta, S. ; Dept. of Inf. & Comput. Sci., California Univ., Irvine, CA, USA ; Savoiu, N. ; Dutt, N. ; Gupta, R.
more authors

We introduce a code transformation technique, "conditional speculation", that speculates operations by duplicating them into preceding conditional blocks. This form of speculation belongs to a class of aggressive code motion techniques that enable movement of operations through and beyond conditionals and loops. We show that, when used during scheduling in a high-level synthesis system, this particular code motion has positive effect on latency and controller complexity, e.g., up to 35 % reduction in longest path cycles and the number of states in the finite state machine (FSM) of the controller. However, it is not enough to determine complexity by the number of states in the control FSM. Indeed, the greater resource sharing opportunities afforded by speculation actually increase the total control cost (in terms of multiplexing and steering logic). This also adversely affects the clock period. We examine the effect of the various code motions on the total synthesis cost and propose techniques to reduce costs to make the transformations useful in real-life behavioral design descriptions. Using the MPEG-1 and ADPCM benchmarks, we show total reductions in schedule lengths of up to 50 % while keeping control and area costs down.

Published in:

System Synthesis, 2001. Proceedings. The 14th International Symposium on

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.