By Topic

Rigorous modeling of ultrawideband VHF scattering from tree trunks over flat and. sloped terrain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiangqi He ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Geng, N. ; Lam Nguyen ; Carin, L.

Three electromagnetic models are employed for the investigation of ultrawideband VHF scattering from tree trunks situated over flat and sloped terrain. Two of the models are numerical, each employing a frequency-domain integral-equation formulation solved via the method of moments (MoM). A body-of-revolution (BoR) Mote formulation is applied for a tree trunk on a flat terrain, implying that the BoR axis is perpendicular to the layers of an arbitrary layered-earth model. For the case of sloped terrain, the BoR model is inapplicable, and therefore the MoM solution is performed via general triangular-patch basis functions. Both MoM models are very accurate but are computationally expensive. Consequently, the authors also consider a third model, employing approximations based on the closed-form solution for scattering from an infinite dielectric cylinder in free space. The third model is highly efficient computationally and, despite the significant approximations, often yields accurate results relative to data computed via the reference MoM solutions. Data from the three models are considered, and several examples of application to remote sensing are addressed

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 10 )