By Topic

Global snow cover monitoring with spaceborne Ku-band scatterometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nghiem, S.V. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Wu-Yang Tsai

This paper presents a study to demonstrate the potential of a spaceborne Ku-band scatterometer to monitor global snow cover. Global Ku-band data were acquired by the NASA Scatterometer (NSCAT) operated on the Advanced Earth Observing Satellite (ADEOS) from September 1996 to June 1997. NSCAT backscatter patterns aver the northern hemisphere reveals boundaries between different snow classes, defined by the Cold Regions Research and Engineering Laboratory (CRREL), Hanover, NH, snow classification system at different times of the snow season. They show the evolution of the backscatter signature throughout the entire seasonal snow cycle. Within the snow extent determined by the National Oceanic and Atmospheric Administration (NOAA), Washington, DC, and Climate Prediction Center (CPC), operational snow product, Ku-band backscatter data expose detailed features and rapid changes as observed in in-situ snow depth data from surface weather stations in U.S., Canada, and Russia. Sensitivity of Ku-band backscatter to snow conditions is illustrated with the dramatic change over the U.S. northern plains and the Canadian prairie region corresponding to the snow event leading to the 1997 Flood of the Century. They discuss snow field experiments and data analysis plan to understand snow scattering mechanisms, to interpret snow backscatter, and to derive its relationship with snow physical parameters

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:39 ,  Issue: 10 )