By Topic

Automatic graph extraction from color images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lourens, T. ; ERATO, Japan Sci. & Technol. Corp., Tokyo, Japan ; Okuno, H.G. ; Kitano, H.

An approach to symbolic contour extraction is described that consists of three stages: enhancement, detection, and extraction of contours and corners. Contours and corners are enhanced by models of monkey cortical complex and endstopped cells. Detection of corners and local contour maxima is performed by selection of local maxima in both contour and corner enhanced images. These maxima form the anchor points of a greedy contour following algorithm that extracts the contours. This algorithm is based on the idea of spatially linking neurons along a contour that fire in synchrony to indicate an extracted contour. The extracted contours and detected corners represent the symbolic representation of the image. The advantage of the proposed model over other models is that the same low constant thresholds for corner and local contour maxima detection are used for different images. Closed contours are guaranteed by the contour following algorithm to yield a fully symbolic representation which is more suitable for reasoning and recognition. In this respect our methodology is unique, and clearly different from the standard (edge) contour detection methods. The results of the extracted contours (when displayed as being detected) show similar or better results compared to the SUSAN and Canny-CSS detectors

Published in:

Image Analysis and Processing, 2001. Proceedings. 11th International Conference on

Date of Conference:

26-28 Sep 2001