Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

2D shape recognition by hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bicego, M. ; Dipartimento di Inf., Verona Univ., Italy ; Murino, V.

In computer vision, two-dimensional shape classification is a complex and well-studied topic, often basic for three-dimensional object recognition. Object contours are a widely chosen feature for representing objects, useful in many respects for classification problems. We address the use of hidden Markov models (HMM) for shape analysis, based on chain code representation of object contours. HMM represent a widespread approach to the modeling of sequences, and are largely used for many applications, but unfortunately are poorly considered in the literature concerning shape analysis, and in any case, without reference to noise or occlusion sensitivity. The HMM approach to shape modeling is tested, probing good invariance of this method in terms of noise, occlusions, and object scaling

Published in:

Image Analysis and Processing, 2001. Proceedings. 11th International Conference on

Date of Conference:

26-28 Sep 2001