By Topic

Turbo equalization of convolutional coded and concatenated space time trellis coded systems using radial basis function aided equalizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. S. Yee ; Dept. of Electr. & Comput. Sci., Southampton Univ., UK ; B. L. Yeap ; L. Hanzo

A reduced-complexity radial basis function (RBF) aided neural-network based turbo equalization (TEQ) scheme is proposed for employment in a serially concatenated convolutional coded and systematic space time trellis coded (CC-SSTTC) arrangement. A two-path Rayleigh fading channel having a normalised Doppler frequency of 3.3615×10 -5 was used. The BER performance of the RBF-CC-SSTTC(4,4) scheme employing a transmission burst consisting of 100 symbols using a space-time-trellis (STT) interleaver of at least 400 symbols and eight turbo equalization iterations was found to be similar to that of the CC-SSTTC system using a trellis-based TEQ, which attains the optimum performance. However, the Jacobian RBF based TEQ provided a complexity reduction factor of 14

Published in:

Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th  (Volume:2 )

Date of Conference: