By Topic

A time-frequency approach for newborn seizure detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boashah, B. ; Signal Processing Res. Centre, Queensland Univ. of Technol., Brisbane, Qld., Australia ; Mesbah, M.

Techniques previously designed for seizure detection in newborns using the electroencephalogram (EEG) have been relatively inefficient due to their assumption of local stationarity of the EEG. To overcome the problem raised by the nonstationarity of the EEG signal, current methods are extended to a time-frequency approach. This allows the analysis and characterization of the different newborn EEG patterns that are intended to be the first step toward an automatic time-frequency seizure detection and classification. An in-depth analysis of both the autocorrelation and spectrum seizure detection techniques identified the detection criteria that can be extended to the time-frequency domain. The selected method uses a high-resolution reduced interference time-frequency distribution referred to as the B-distribution (BD). Here, the authors present the various patterns of observed time-frequency seizure signals and relate them to current knowledge of seizures. In particular, initial results indicate that a quasilinear instantaneous frequency (IF) can be used as a critical feature of the EEG seizure characteristics.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:20 ,  Issue: 5 )