By Topic

Visionary prototyping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kok-Meng Lee ; George W. Woodruff Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; T. M. Sobh

Today, besides introducing intelligence directly into equipment/systems through embedded microcomputers and providing virtual prototyping through enhanced computer-aided design/computer-aided engineering (CAD/CAE) facilities, information now is well regarded as an essential part of the integrated design approach whereby all members of the prototype development and manufacturing automation team can work closely together throughout the design and manufacturing cycle. The article focuses on two subtopics. The first is the development of a theory for prototyping discrete-event and hybrid systems and its applications. In discrete-event dynamic systems (DEDS), state transitions are caused by internal, discrete events in the system. An overview for the development of a simple graphical environment for simulating, analyzing, synthesizing, monitoring, and controlling discrete-event and hybrid systems is also presented. The second focus is on prototyping machine vision for real-time automation applications. We discuss the problems associated with traditional machine vision systems for cost-effective, real-time applications, novel alternative system design to overcome these problems, and the new trends of modern vision sensors. Modern smart sensors provide the features of traditional machine vision systems at less than half of the usual price by eliminating the signal-conversion electronics, fixed-frame rates, and limited gray-scale quantization. The camera, image-acquisition electronics, and computer are integrated into a single unit to allow dynamic access to the charge-coupled devices without image float or flutter. We also present a physically accurate image synthesis method as a flexible, practical tool for examining a large number of hardware/software configuration combinations for a wide range of parts

Published in:

IEEE Robotics & Automation Magazine  (Volume:8 ,  Issue: 3 )